Exam Algorithms and Data Structures in C

11 April 2014, 9 - 12 h.

This exam contains 4 problems, yielding in total 90 points.
The exam grade is (# points)/10 + 1.

1. (25 point)
This problem is about binary trees defined by the following type definition:

typedef struct TreeNode xTree;

struct TreeNode {
int item; v
Tree leftChild, rightChild;

}i

(a)
(b)

When is a binary tree a search tree?
Define the C function with prototype
Tree addInSearchTree (Iree t, int n);

that adds n to search tree t (provided n does not occur in t) while preserving the
search tree property. When n occurs in t, the returned tree is equal to the input
tree.

Define the C function with prototype
Tree removeFromSearchTree (Tree t, int n);

that removes n from t (provided n occurs in t) while preserving the search tree
property. When n does not occur in t, the returned tree is equal to the input tree.
You may use the function with prototype

int successor (Tree t);

(you do not have to define this function). Precondition for the function successor
is that t has a right child. The function successor returns the smallest integer
m in the subtree that has the right child of t as root, and it removes the node
containing m.

2. (20 point)
The C code below defines types and functions for the implementation of lists of integers.
However, there are 4 errors in the code so that functions do not work properly and/or
memory leaks may occur. Find these errors, indicate what is wrong and repair them.

1 typedef struct ListNode *List;

2

3 struct ListNode ({

4 int item;

5 List next;

6 1

7

8 List addItem(int n, List 1i) {

9 List newList = malloc (sizeof (struct ListNode));
10 assert (newList !=NULL);

11 newList->item = n;

12 newList->next = 1i;

13 return newList;

14 '}

15

16 List removeFirstNode (List 1i) {

17 List returnList;

18 if (1i == NULL) {

19 printf ("list_empty\n");

20 abort ();

21 }

22 returnList = li->next;

23 free(li);

24 return returnlList;

25 }

26

27 List insertInOrder (List 1i, int n) {
28 /# 1i is sorted in ascending order =/
29 List 1il;

30 if (li-»item > n || 1i == NULL) {
31 return addItem(n,1li);

32 }

33 1il1 = 1i;

34 while (lil->next != NULL && (lil->next)->item < n) {
35 1il = lil->next;

36 }

37 return 1i;

38}

39 int removeLastOcc(List =+1lp, int n) {

40 /+ NB: lp is a reference pointer!

41 + the function removes the last occurrence of n from =*Ip
42 + it returns 1 when an occurrence of n has been removed,
43 + otherwise 0

44 */

45 if (*lp == NULL) {

46 return 0;

47 }

48 if ((xlp)->item == n) {

49 *1lp = removeFirstNode (x1lp);
50 return 1;

51 }

52 if (removelastOcc (& ((xlp)->next),n)) {
53 return 1;

54 }

55 return 0;

56}

57

58 List removeAllOcc(List 1i, int n) {
59 /% remove all occurrences of n and return the resulting list =/
60 if (1i == NULL) {

61 return NULL;

62 }

63 if (li-»item == n) {

64 return removeAllOcc(li->next,n);

65 } else {

66 li->next = removelAllOcc(li->next,n);
67 return 1i;

68 }

69 }

3. (25 points)
This problem is about tries.
(a) Let W be a collection of words. Define: T is a standard trie for W.
(b) Describe in pseudocode an algorithm to search for a word in a trie.

(c) Explain what a suffix trie is, and how it can be used to search for a pattern in a
text.

4. (20 points)
Consider the following algorithm:

,algorithm BreadthFirstSearch(G,v)
input connected graph G with node v;
all nodes and edges ane unlabeled
result labeling of the edges of G with NEW and OLD;
the edges with label NEW form a spanning tree of G,
and all nodes are visited (and labeled VISITED)
give v the label VISITED
create an empty queue Q
enqueue(v)
while Q not empty do
u + dequeue()
forall ¢ incident with u do
if e has no label then
w < the other node incident with e
if w has no label then
give e the label NEW
give w the label VISITED
else '
give e the label OLD

(a) What is a spanning tree of a connected graph?

(b) The algorithm contains one error. Indicate what the error is and repair it.

(c) Modify the corrected algorithm into an algorithm FindPath(G,v,w) that finds a
path from v to w in graph G.

(d) Argue that the path found by FindPath has minimal length. Here the length of a
path is the number of edges in it.

